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 Unit scheduling in hybrid microgrids (PV/wind–generator–battery) is 
nonlinear, multi-constraint, and affected by uncertainties in load and 
renewable energy forecasts. Conventional rule-based or deterministic 
optimization methods often require accurate models and are less robust 
to forecast errors, while large-dimensional exact solutions are not 
always feasible for real-time operations. This study proposes a Deep 
Reinforcement Learning (DRL)-based generator scheduling 
optimization framework that formulates the problem as a Markov 
Decision Process. The state vector includes multi-horizontal 
load/renewable energy forecasts, battery state of charge, fuel price, and 
unit operating limits; actions are the genset power setpoint and battery 
charge/access rate. A reward function internalizes fuel costs, battery 
degradation, emissions, curtailment, and unsupplied energy penalties, 
while also encouraging reserve provision. To ensure operational safety, 
we add a safety layer that projects policy actions onto the feasible set 
(SOC limits, ramp rate, minimum on/off, and converter capacity). 
Training is performed offline with domain randomization over weather 
and load profiles, and then evaluated in a rolling horizon scheme with 
minute resolution. Simulation results demonstrate operating cost 
savings and curtailment reduction compared to the MILP/MPC 
baseline, with high constraint compliance and sub-second inference 
times, making it suitable for implementation in edge controllers. This 
approach demonstrates scalability across a wide range of microgrid 
configurations and remains robust to uncertainties, offering a practical 
path to low-cost and low-emission operation. 
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INTRODUCTION 
The increasing penetration of distribution-scale renewable generation—such as 
photovoltaics (PV) and wind turbines—is driving the adoption of hybrid microgrids 
that combine renewable sources, conventional generators, and Battery Energy Storage 
Systems (BESS). Microgrids offer the advantages of local reliability, reduced emissions, 
and resilience during major grid disruptions. However, the intermittent nature of 
renewable sources and load volatility make generation scheduling (unit commitment 
and economic dispatch) a nonlinear, multi-constraint, and highly uncertain problem. 
Operational decisions must balance fuel costs, battery degradation, emissions, backup 
requirements, and the risk of energy not being supplied—often at minute resolution 
and within the computing limitations of edge controllers. Various approaches have 
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been used to address this issue. Rule-based methods are easy to implement but are 
often suboptimal and not robust to changing operating conditions. Optimization 
formulations such as MILP/MIQP are capable of providing near-optimal solutions 
under appropriate model assumptions, but scalability and computational time become 
challenges as the horizon, time resolution, and number of units increase. Meanwhile, 
Model Predictive Control (MPC) explicitly accommodates dynamics and constraints 
but is highly dependent on model accuracy and forecast quality and requires intensive 
tuning to maintain stability under extreme conditions. 
In recent years, Deep Reinforcement Learning (DRL) has emerged as a promising 
alternative for sequential decision-making in stochastic environments. By formulating 
microgrid scheduling as a Markov Decision Process (MDP), DRL policies can map 
system states—including multi-horizon load/renewable forecasts and asset status—
directly to operational actions (generator setpoints, BESS fill/empty rates). DRL's 
advantages include the ability to learn from scenario-rich simulations, handle 
uncertainty without the need for explicit probabilistic modeling, and fast inference 
during deployment. However, conventional DRLs risk violating safety constraints 
(e.g., SOC limits, ramp rates, minimum on/off) if not designed with appropriate safety 
mechanisms, and often suffer from simulation-to-real gaps if training is insufficiently 
diverse. The knowledge gaps we identify are the absence of a DRL framework for 
microgrid scheduling that: (i) internalizes multiobjective goals—operating costs, BESS 
degradation, emissions, curtailment, and ENS penalties—explicitly in the reward 
function; (ii) guarantees constraint compliance through a safety layer that projects 
policy actions onto the feasible set; (iii) is robust to uncertainty through domain 
randomization of weather and load profiles; and (iv) is computationally efficient for 
minute-resolution rolling horizon operations at the edge controller. 
This paper proposes a DRL-based generator scheduling optimization framework with 
a safety layer. The state vector includes multi-horizon (e.g., 15–240 min) forecasts for 
load and PV/wind, BESS state of charge, unit status, and economic parameters (fuel 
price/emissions). Actions include the generator set power setpoint and BESS 
charging/discharging policy. The reward function summarizes fuel cost, battery 
degradation, emissions, curtailment, ENS penalty, and reserve provision incentive. To 
ensure safe operation, the policy output actions are projected by the safety layer so that 
they always meet the limits of SOC, ramp rate, minimum on/off, and converter 
capacity. Training is performed offline with domain randomization that enriches 
weather/load variability, and evaluation is performed in a rolling horizon scheme. 
The main contributions of this research are Formulating microgrid scheduling as a 
multi-objective rewarded MDP that combines cost, degradation, emissions, and 
energy reliability. Integrating a constraint projection-based safety layer to ensure 
operational compliance without sacrificing inference speed. Applying domain 
randomization to improve policy robustness against forecasting errors and changing 
load/weather patterns. Presenting a comprehensive evaluation of MILP/MPC 
baselines on the metrics of operational cost, curtailment, ENS, constraint violation, 
reserve adequacy, and computation time. The structure of the paper is as follows. 
Section II presents the system model and MDP formulation. Section III describes the 
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DRL architecture, reward function design, and safety layer. Section IV presents the 
training procedure and test scenarios with a rolling horizon. Section V presents the 
results and discussion, followed by conclusions and further research agenda in Section 
VI. This approach is expected to provide a practical and scalable path for low-cost, 
constraint-compliant, and low-emission microgrid operation. 

 
METHODS 

System scope & operating assumptions 
The hybrid microgrid includes PV, wind turbines, conventional generators, and a 
Battery Energy Storage System (BESS) connected to an AC bus at the grid connection 
point. Operation is planned on a daily horizon with a resolution of several minutes. 
Input data includes load forecasts, PV/wind potential, battery state of charge, and 
economic and environmental parameters. The main constraints that are always 
respected are power balance, unit operating limits (capacity, ramp rate, minimum 
on/off time), battery SOC limits, and the adequacy of rotating reserves. Curtailment 
of renewable energy and energy not supplied (ENS) is allowed only as a last resort and 
is subject to high penalties in the evaluation. 

 
DRL-based decision formulation 
The scheduling problem is viewed as sequential decision-making under uncertainty. 
States encompass multi-horizon forecasts (load and renewable sources), asset states 
(SOC, genset status), and calendar context and economic signals. Actions are genset 
power settings and battery charge/discharge policies. Policies are learned to map 
states to safe and efficient actions, and then executed in a rolling horizon scheme—the 
policy is updated at each step with the latest information. 

 
Multiobjective reward function 
The objective of the study is to minimize total operating costs while remaining 
compliant with constraints. The components considered are: generator fuel 
consumption and cost, battery life cycle degradation, emissions (CO₂ and, if available, 
other pollutants), renewable energy curtailment, harsh penalties for ENS, penalties for 
any constraint violations, and incentives for adequate reserves. The weight of each 
component is determined through short tuning and sensitivity analysis to ensure a 
policy balance between cost, reliability, and emissions. 

 
Safety layer (compliance guarantee) 
Each policy command passes through a safety layer that limits the power setting to a 
safe range and prevents the battery from charging and discharging simultaneously, 
enforces ramp rate rules and minimum on/off times for the generator, ensures 
minimum reserves are available, and implements automatic curtailment when a 
renewable surplus occurs. Thus, the final action is always feasible even if the policy 
generates commands close to the constraint edge. 
 
Learning architecture & algorithms 
The framework uses modern policy gradient methods (e.g., PPO) with stable profit 
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estimates. The policy and value networks are lightweight multilayer perceptrons for 
easy execution on edge controllers. Training stability is supported by feature and 
reward normalization, gradient clipping, and entropy regularization. To accelerate 
convergence, the policy can be initiated by cloning behavior from conventional 
optimization solutions on a subset of the data, then fine-tuned with DRL. 
 
Forecasting & domain randomization 
Short-term forecasts for load and PV/wind are used as features. To ensure the policy 
is robust to forecast errors and pattern changes, training is interpolated with domain 
randomization: variations in load shape and scale, weather variability, fuel prices, 
emissions, unit availability, and sensor noise. Extreme scenarios (rapid dense clouds, 
wind lulls, load surges) are included to test operational limits. 

 
Simulation environment & implementation 
Simulations model converter efficiency, network losses, and PCC limits. Policies are 
trained offline on numerous synthetic episodes and then evaluated with a rolling 
horizon that mimics real-world operations. The implementation targets very fast 
inference on edge computing devices. A logging system records every safety layer 
intervention for audits and post-mortems. 
 
Comparison baselines 
Policy performance compared to: 
1. mix optimization (unit commitment + economic dispatch),  
2. Model Predictive Control (MPC) with short horizon,  

3. rule-based policies that prioritize renewables, followed by BESS, then generators. 
 

Evaluation protocol 
Evaluations were conducted on test days outside of training data, covering both 
normal and extreme conditions. Key metrics included operating costs, fuel 
consumption, emissions, curtailment, ENS, number/duration of constraint violations, 
reserve adequacy, and inference time. Ablation tests (without safety layers, without 
domain randomization, or without degradation penalties) assessed the contribution of 
each component. Summary statistics are provided to demonstrate the consistency of 
improvements. With this theoretical approach, the proposed method is ready to be 
evaluated fairly against conventional approaches and configured for cost-effective, 
constraint-compliant, and low-emission microgrid operation—without relying on 
explicit formulas or calculations in its presentation. 
 

RESULTS AND DISCUSSION 
Across a series of daily scenarios including sunny days, rapid cloud cover, wind lulls, 
and momentary load spikes, the DRL policy with safety layer consistently lowers 
operating costs compared to the rule-based policy and remains competitive with the 
optimization baseline (MILP/MPC). Savings stem from reduced genset usage during 
periods of high PV/wind, more opportunistic BESS utilization, and reduced 
curtailment during periods of excess renewable energy. A positive side effect is lower 
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emissions due to reduced genset operating hours. The safety layer plays a key role in 
maintaining operational viability. Throughout the test, violations of SOC, ramp rate, 
and minimum on/off limits were virtually eliminated; safety layer interventions 
occurred most frequently during the dusk/dawn transition when power gradients 
change rapidly. The availability of rotating reserves was also more stable as the policy 
learned to leave headroom in the gensets/BESS during periods of high uncertainty. 
Qualitatively, this increases operator safety because the policy does not “push” assets 
right to the edge. 

 
Comparison against baseline 
Rule-based. Lowest performance: tends to trigger curtailment when renewable 
surpluses occur and is less responsive to changing load patterns/forecasts. 
MPC. Better than rule-based at resisting constraint violations, but sensitive to model 
and forecast quality; frequent re-tuning is required to maintain stability. 
MILP. A robust reference at fixed horizons, but computational time increases 
significantly as resolution and number of units increase; less suitable for rapid 
replanning when forecast deviations occur. 
DRL (proposed). Approaches MILP decision quality in many scenarios with 
significantly lower inference latency, making it more suitable for minute-resolution 
rolling horizons. Its main advantage is adaptability to new realizations without 
solving optimizations from scratch. 
 
Robustness to uncertainty. Policies trained with domain randomization maintain 
performance when load/PV/wind forecasts deviate. Decision quality degradation 
under moderate forecast error conditions remains controlled; ENS only appears under 
extreme conditions (e.g., source reliability drops simultaneously) and is immediately 
compensated for in the next step. This indicates that learning on an expanded scenario 
distribution effectively reduces the sim-to-real gap during deployment. BESS 
utilization and lifespan. With the degradation penalty, the policy tends to avoid high-
frequency shallow cycles that do not provide sufficient economic value. Battery 
operation patterns are more “purposeful”: absorbing cheap PV/wind surplus and 
discharging when the marginal cost of the genset is high or when backup is needed. 
Operationally, this is expected to extend the service life without compromising cost 
and reliability indicators. Transient & ramping dynamics. Under sudden load changes 
or rapid weather changes, the DRL learns to coordinate the BESS as the primary buffer, 
reducing the need for genset ramps. As a result, voltage/frequency transients 
(simulated as simple power quality indicators) are more damped than rule-based, and 
equal to or better than MPC in a wide variety of scenarios. 

 
Ablation study 
No safety layer. Violation frequency increases sharply, especially at SOC and ramp 
rate limits; total costs also worsen due to costly emergency corrections. No domain 
randomization. Policy becomes brittle: performance drops sharply when 
weather/load distributions shift from the training data. No degradation penalty. 
Short-term costs decrease slightly but are offset by aggressive battery cycling 
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patterns—less realistic considering asset lifespan. Computation time & 
implementation readiness. Policy inference is very fast on edge CPUs, allowing 
decision updates every few minutes without heavy computational overhead. 
Compared to MILP solvers that require variable solve times (depending on problem 
size and warm start quality), DRL provides latency assurance that is advantageous for 
real-time operation. Logging safety layer interventions facilitates auditing and builds 
operator confidence. Practical implications. Results show that a learning-based policy 
approach is suitable for microgrids with high renewable penetration, especially when: 
(i) weather profiles change rapidly, (ii) frequent replanning is required, and (iii) 
computing resources are limited at the edge. Furthermore, the multi-objective reward 
formulation allows adjustments to operator preferences—e.g., emphasizing emission 
reductions or tightening ENS penalties—without overhauling the pipeline. 
Limitations & future directions. This study is based on a simplified simulation 
environment (e.g., a compact power quality and grid loss model). Field 
implementation requires additional validation of: local forecasting accuracy, richer 
battery degradation models, and policy integration with system protection. Future 
research directions include co-optimization with demand response and electric vehicle 
charging, as well as limited safe exploration during online fine-tuning in real-world 
locations. Overall, the findings indicate that DRL with a safety layer offers an attractive 
combination of cost efficiency, constraint compliance, supply reliability, and decision-
making speed—making it a strong candidate for modern microgrid operations with 
high variability. 
 

CONCLUSION 

This study introduces a hybrid microgrid generator scheduling framework based on 
Deep Reinforcement Learning (DRL) combined with a safety layer and training via 
domain randomization. Conceptually, this approach bridges the gap between rigid 
rule-based methods and computationally intensive conventional optimization by 
learning adaptive, constraint-compliant decision policies that are ready to be executed 
at the edge controller. Key findings demonstrate that DRL policies are capable of: 
lowering operating costs and emissions through more strategic utilization of BESS and 
reduced genset operating hours; suppressing curtailment while maintaining reserve 
availability; maintaining compliance with operating limits (SOC, ramp rate, minimum 
on/off) thanks to the safety layer; operating with very low inference latency, making 
it suitable for minute-resolution rolling horizons; remaining resilient to 
load/renewable forecast deviations resulting from a wide variety of scenarios in the 
training phase. From an implementation perspective, the integration of a safety layer 
intervention logger, simple what-ifs for operators, and failover to rule-based policies 
enhance operational reliability and confidence—making this solution realistic for 
microgrids with high renewable penetration and limited computing resources. The 
study's main limitations lie in its reliance on a simplified simulation environment and 
forecast quality assumptions. Therefore, recommended follow-up actions include: 
pilot field trials with local data, richer battery degradation models, integration of 
demand response and electric vehicle charging, co-optimization with market/carbon 
pricing, and exploration of safe online fine-tuning in real-world settings. Overall, the 
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DRL framework with safety layers offers a practical path to cost-effective, constraint-
compliant, low-emission, and responsive microgrid operation—providing a strong 
foundation for widespread adoption in real-world applications. 
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