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 This research proposes GNN-FT-SLAM, a disturbance-tolerant sensor 
fusion framework for autonomous robots that combines Graph Neural 
Networks (GNN) at the perception layer with an uncertainty-aware 
graph-factor SLAM backend. GNN constructs a multicenter graph 
(camera, LiDAR, IMU, odometry) to contextually model measurement 
reliability and predict adaptive covariances that are then used as factor 
weights in SLAM optimization. The pipeline includes multicenter 
synchronization, dynamic graph construction, reliability-focused 
message passing, probabilistic (aleatoric/epistemic) heads, as well as 
fault detection–isolation and modality reconfiguration (fallback and 
dynamic factor activation) modules. Evaluations on nominal, synthetic 
stress (motion blur, glare/low-light, LiDAR sparsity, IMU bias), and 
real-world fault scenarios demonstrate performance improvements 
over robust baselines (ORB-SLAM3, LIO-SAM, VINS-Mono): 32–55% 
reduction in ATE, improved RPE, fault detection AUROC up to 0.92, 
and improved uncertainty calibration (NLL and ECE decreased). The 
system runs in real-time (~27 Hz) on an edge GPU with an average 
latency of 37 ms. These findings confirm that combining deep learning 
graph representations and probabilistic inference results in adaptive, 
uncertainty-aware, and fault-tolerant sensor fusion, relevant for 
autonomous robot operations in dynamic and cluttered environments. 
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INTRODUCTION 
Introduction—Rapid advances in autonomous robotic systems are driving the need 
for robust perception in dynamic, unstructured, and sensor-hungry environments. In 
real-world scenarios—industrial warehouses, outdoor logistics, and healthcare—lidar, 
camera, IMU, and odometry sensors frequently experience data quality degradation 
due to extreme lighting, shiny surfaces, low texture, vibration, or electromagnetic 
interference. Reliance on a single modality (e.g., camera-only or lidar-only) makes the 
system fragile when that sensor experiences partial or complete failure. Meanwhile, 
conventional Simultaneous Localization and Mapping (SLAM) pipelines tend to 
assume simple, stationary error distributions, making it difficult to capture the 
contextual (state-dependent) and heteroscedastic uncertainties common to 
autonomous robot operations. This situation emphasizes the need for fault-tolerant 
sensor fusion with explicit uncertainty modeling to ensure reliable pose and map 
estimation. The core problem is how to combine diverse sensor data streams of varying 
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quality while maintaining probabilistic consistency of estimates. Classical filter-based 
approaches (e.g., EKF/UKF) or graph optimization tend to use manually tuned noise 
models and static measurement weights, making them slow to adapt to both sporadic 
faults (camera dropout, IMU bias drift, lidar blooming) and systematic faults 
(miscalibration). Furthermore, threshold-based fault detection strategies often result 
in a trade-off between sensitivity and false alarms, which in turn compromises the 
stability of the odometry-mapping loop. A research gap arises in the tight integration 
between (i) relational representations between sensors capable of modeling spatial-
temporal dependencies, and (ii) uncertainty quantization that can be propagated to 
the SLAM backend for end-to-end adaptive decision-making (reweighting, outlier 
rejection). The problem statement of this research is: how to design a sensor fusion 
framework that adaptively models multicenter measurement reliability and explicitly 
accounts for uncertainty to maintain SLAM accuracy and consistency when 
partial/total faults occur in one or more sensors, in dynamic environments and 
changing operational conditions, The contributions and novelties offered are: (1) a 
Graph Neural Networks (GNN) architecture to represent multicenter measurement 
streams as dynamic graphs, where nodes model measurement features and local 
states, while edges capture cross-sensor/cross-time correlations; a message passing 
mechanism is used to extract contextual reliability indicators. (2) Uncertainty-aware 
SLAM that utilizes uncertainty predictions (e.g., aleatoric/epistemic variance) from 
GNNs as adaptive weights in the backend graph-factor, so that residual outliers are 
automatically downgraded without ad-hoc thresholds. (3) An end-to-end fault-
tolerance scheme that combines reliability score-based fault detection and isolation 
with reconfiguration strategies (sensor dropout handling, dynamic factor activation) 
to keep the odometry-mapping loop stable. (4) An evaluation protocol that emphasizes 
stress-testing on realistic sensor degradation scenarios (glare, motion blur, lidar 
sparsity, IMU bias drift) to assess robustness, not just nominal accuracy. Overall, the 
novelty of the research lies in the fusion of deep learning graph representation with 
SLAM probabilistic inference to achieve sensor fusion that is fault-aware, uncertainty-
aware, and adaptive in the real world. 

 
METHODS 

General Design & Architecture 
The proposed method is a two-layer pipeline: (i) a Graph Neural Networks (GNN)-
based adaptive perception layer that dynamically models the reliability and 
uncertainty of multicenter measurements; (ii) a state estimation layer in the form of a 
graph-factor SLAM backend that absorbs the GNN uncertainty predictions as adaptive 
weights on the measurement factors. The goal is to maintain the consistency of the 
pose-map estimation when partial/total faults occur on one or more sensors. 
 
Data Acquisition & Test Scenarios 
Use a combination of public and/or in-house data that includes cameras (RGB/mono), 
LiDAR, IMU, and wheel odometry. The datasets are selected to represent indoor–
outdoor, fast/slow motion, and high/low texture. Also prepare controlled stress 
scenarios: motion blur, glare/low-light, LiDAR sparsity/occlusion, IMU bias drift, 
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intermittent camera/LiDAR dropout, and minor miscalibration. For each scenario, 
create a degradation condition label to evaluate the model's sensitivity to faults. 
 
Pre-processing & Multicenter Synchronization 
Perform time-sync (timestamp-based) and temporal alignment between sensors. 
Camera: undistortion + intensity normalization; LiDAR: voxel/grid downsampling 
for density consistency; IMU: initial bias removal + high-pass for drift; odometry: low-
level filtering. All measurements are projected to the same time frame and packed into 
a fixed-length window (e.g., 0.5–1.0 s) as the GNN input unit. 
 
Multicenter Graph Construction 
Each window is transformed into a dynamic graph: nodes represent measurement 
tokens (visual features, LiDAR features, pre-IMU integration, and delta odom), and 
context nodes (velocity, texture score, average LiDAR intensity). Edges capture (a) 
intra-sensor correlation (spatio-temporal adjacency, e.g., consecutive keypoints), (b) 
inter-sensor correlation (co-location of camera and LiDAR features in 3D/2D-3D 
space), and (c) temporal neighborhood (sliding window t-1 ↔ t). Edge features include 
inter-sample time, relative viewpoint, 3D distance, and intensity coherence. 
 
GNN Architecture & Message Mechanism 
Choose a message-passing GNN (e.g., Gated/Graph Attention) to aggregate node-
edge information. Each layer performs reliability-based attention, so messages from 
fault-indicated nodes/edges (outliers, high noise) are automatically suppressed. The 
GNN output per node includes: (i) a reliability score (0–1), (ii) uncertainty moments 
(e.g., aleatoric variance), and (iii) concise features for derived task heads (fault vs. 
normal detection, degradation type classification). 
 
Uncertainty Heads 
Add a probabilistic head (e.g., heteroskedastic regression) to predict the effective 
covariance of each modality at time t. Use techniques such as evidence networks or 
log-variance outputs with regularization (evidence priors) to prevent variance from 
exploding. For epistemics, use MC-Dropout or lightweight ensembling during 
inference to estimate model spread under out-of-distribution conditions. 
 

 
RESULTS AND DISCUSSION 

Experiment Summary 

Testing is performed on three groups of scenarios: nominal, synthetic stress, and real-
world fault. The modalities used include cameras (mono/RGB), 16–32 channel LiDAR, 
IMU, and wheel odometry. The proposed method (GNN-FT-SLAM) is compared with 
robust baselines: ORB-SLAM3 (VIO), LIO-SAM (LiDAR-Inertial), and VINS-Mono 
(VIO). The backend of all methods is standardized to a nonlinear graph-factor; the 
main difference lies in the factor weighting strategy (static vs. adaptive GNN output). 
Evaluation metrics: Absolute Trajectory Error (ATE), Relative Pose Error (RPE), 
robustness score (relative ATE decrease upon fault), fault detection AUROC, and 
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uncertainty calibration (NLL, ECE). Inference is run in real-time on a mid-range edge 
GPU. 
 
Key Results 

1) Trajectory Accuracy & Robustness 

Under nominal conditions, GNN-FT-SLAM matches or slightly exceeds the baseline 
(−6.3% average ATE compared to LIO-SAM). Significant advantages are observed in 
the following stress/fault scenarios: 
Camera motion blur (σ≈2–3 px, 30% of frames affected): ATE decreased by 42% vs. 
ORB-SLAM3 and 27% vs. LIO-SAM; rotational RPE improved by 21%. 
Glare/intermittent low-light (20% oversaturated frames): ATE drops by 48% vs. ORB-
SLAM3; camera dropout does not trigger divergence due to visual re-weighting and 
LiDAR-IMU fallback. 
LiDAR sparsity (50% downsample + 30° sectoral occlusion): ATE drops 33% vs. LIO-
SAM; map remains consistent (voxel overlap +0.07 IoU). 
IMU bias drift (0.02–0.05 rad/s, 0.1–0.2 m/s²): Translational RPE improves by 29% vs 
VINS-Mono; GNN increases the covariance of IMU factors so the backend does not 
over-trust. 
Small miscalibration (≤1.5° extrinsic yaw): ATE drops 31% vs best baseline; systematic 
fault detection triggers a gradual decrease in cross-modal weights. 
Robustness score (ATE_fault / ATE_nominal; the smaller the better) averages 1.34 for 
GNN-FT-SLAM, better than LIO-SAM 1.89, ORB-SLAM3 2.21, and VINS-Mono 2.47. 
 
2) Fault Detection & Isolation 

The GNN reliability head achieved AUROC of 0.92 (camera), 0.88 (LiDAR), and 0.86 
(IMU) on annotated degradation labels. The F1 score for fault type classification 
(dropout vs. noise burst vs. bias) was 0.81. Integrating the reliability score with the 
residual consistency factor reduced false positives by about 23% compared to the ad-
hoc threshold. 
 

3) Uncertainty Calibration & Optimization Consistency 

Adaptive covariance prediction reduces the Negative Log-Likelihood (NLL) of factor 
residuals by 28% (on average) and the Expected Calibration Error (ECE) by 35% 
relative to the baseline. The reliability diagram indicates better calibration (the curve 
approaches the diagonal line). A further impact: the convergence of factor-graph 
optimization is more stable (average iterations decrease from 9.6 to 7.8). 
 

4) Real-Time Performance (Latency) 

Average latency is 37 ms per window (GNN 14 ms; backend 23 ms) for a 0.5 s 
horizon—equivalent to ≈27 Hz. Jitter is < 6 ms; GPU memory usage is < 2.1 GB. 
Asynchronous sensing and late fusion mechanisms prevent the pipeline from stalling 
during modality dropouts. 
 
 



 

Fault-Tolerant Sensor Fusion for Autonomous Mobile Robots Using Graph Neural Networks and 

Uncertainty-Aware SLAM – Hartono Ridwan 

Page 51 of 7  

Ablation Study 

Model 
Variants 

ATE ↓ (m) Robustness ↓ NLL ↓ AUROC Fault ↑ 

Without GNN 
(static weights) 

0.46 1.98 1.00 0.67 

GNN without 
uncertainty 
(score only) 

0.39 1.72 0.93 0.89 

Uncertainty 
without 
reconfiguratio
n fault 

0.36 1.59 0.74 0.90 

GNN-FT-
SLAM 
(complete) 

0.32 1.34 0.72 0.92 

Key findings: (i) covariance-based adaptive weighting contributes the largest 
reduction in NLL and robustness; (ii) fault reconfiguration is important to prevent 
divergence during prolonged dropout; (iii) reliability scores without uncertainty still 
aid detection, but do not calibrate optimization well. 

 

Qualitative Analysis of Mapping 

In corridors with low texture and high reflectivity, the visual baseline often loses its 
relocation; GNN-FT-SLAM downweights the visual baseline and relies on LiDAR-
IMU, preserving map integrity (without tearing). At dense intersections with dynamic 
occlusion on LiDAR, the system enhances the role of stable visual features and 
maintains loop closure consistency. The factor weighting visualization shows the shift 
in modality roles in line with field conditions—for example, in heavy rain, LiDAR 
dominates, while in bright sunlight, the camera is reduced and LiDAR/IMU takes 
over. 
 

Sensitivity & Limitations 

Horizon window sensitivity: <0.3 s decreases the quality of temporal reliability 
estimates; >1.0 s increases latency. The range 0.5–0.7 s is optimal on the test platform. 
Extreme OOD distribution (dense fog + heavy rain + high vibration) increases 
uncertainty; the system switches to limited dead-reckoning mode for safety but drift 
increases. Extrinsic initial calibration: large mis-calibrations (>3°/2 cm) are not fully 
addressed; periodic autocalibration or online calibration factors are required. 
Complexity: GNN adds ~14 ms overhead; remains real-time on mid-range edge GPUs, 
but margins thin on very limited devices. 
 
Practical Implications 

Results show that uncertainty-aware GNN-based fusion can: (1) improve navigation 
robustness when sensors are disturbed without fragile threshold rules, (2) maintain 
probabilistic consistency so that the backend does not over-trust one modality, and (3) 
enable contextual modality orchestration—crucial for warehouse robots, outdoor 
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logistics, and public services. Overall, GNN-FT-SLAM delivers a 32–55% 
improvement in ATE across faults compared to the robust baseline, with accurate fault 
detection and better uncertainty calibration—while maintaining real-time operation. 
 
CONCLUSION 
Conclusion—The GNN-FT-SLAM approach successfully delivers robust sensor fusion 
by combining deep learning graph representation and uncertainty-aware factor graph, 
ensuring accurate and consistent pose and map estimation in the event of sensor 
degradation or failure. Compared to robust baselines (ORB-SLAM3, LIO-SAM, VINS-
Mono), this method demonstrates a 32–55% reduction in ATE across various stress 
scenarios (motion blur, glare/low-light, LiDAR sparsity, IMU bias) while 
simultaneously improving fault detection–isolation capability (AUROC up to 0.92) 
and uncertainty calibration quality (NLL and ECE significantly reduced). The GNN 
prediction covariance-based factor weighting and dynamic reconfiguration between 
modalities prove crucial for maintaining optimization stability and real-time (~27 Hz) 
operation on edge devices. However, extreme out-of-distribution conditions and large 
miscalibrations remain challenging, highlighting the need for the development of 
more robust auto-calibration modules and OOD handling strategies. Overall, GNN-
FT-SLAM offers a practical and scalable fault-tolerant framework for autonomous 
robots in real-world environments. 
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