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 This study proposes a multimodal self-supervised framework for early 
detection of cardiac arrhythmias based on wearables combining 1-lead 
ECG, PPG, and IMU. The core method includes contrastive pretraining 
+ masked reconstruction on synchronized windows and adaptive 
fusion weighted by Signal Quality Index (SQI) and aleatoric 
uncertainty, complemented by domain adaptation for invariant 
representation across devices and populations. The unlabeled corpus 
for pretraining contains 2,400 hours of free-living data from 820 
participants (three different devices), while fine-tuning and clinical 
testing used 1,100 hours of labeled data (n=210; paroxysmal AF, 
PVC/PAC, SVT, episodic brady/tachycardia). In subject-wise testing, 
the model achieved Se 92.8%, Sp 97.1%, F1 90.3%, AUROC 0.972 for AF; 
F1 83.6% for PVC/PAC; and Se 88.9% for SVT. At episode-level 
evaluation (≥30 s), AF sensitivity was 94.6% with false alarms per hour 
(FPh) of 0.28 and a median time-to-detection of 22 s. Robustness 
increased at high activity (ECE 0.032, NLL −27%), leave-device-out 
generalization remained strong (AUROC 0.957), and the on-device 
implementation met resource limits (~68 ms/window on an edge-class 
MCU, <2.3 MB memory). These results demonstrate that signal-
quality/uncertainty-aware multimodal SSL can suppress false alarms 
without sacrificing sensitivity, enabling reliable and label-efficient 
home monitoring for wearable-based arrhythmia screening. 
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INTRODUCTION 
     Cardiac arrhythmias are a major cause of morbidity and mortality, often presenting 

with subtle, intermittent symptoms that only manifest outside the clinic. Wearable 
devices (watches/patches) that record multimodal biosignals such as single-lead 
electrocardiogram (ECG), photoplethysmography (PPG), accelerometer/gyroscope 
(IMU), and skin temperature offer the opportunity for low-cost, continuous 
monitoring. However, early detection practices are still hampered by three factors: (i) 
reliance on scarce and expensive clinical labels, while unlabeled data is abundant; (ii) 
intersubject (age, comorbidities, skin color, movement habits) and interdevice 
(sampling frequency, SNR) variability that degrades model generalizability; and (iii) 
motion artifacts and physiological noise that lead to high false alarm rates when a 
single signal is used. At the same time, classical pipelines based on handcrafted 
features and supervised classification tend to be vulnerable to domain shifts and 
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fluctuating signal quality throughout the day. The core problem to be addressed is 
how to extract meaningful representations from unlabeled multimodal biosignals 
(self-supervised learning/SSL) that remain stable against motion artifacts, transferable 
across devices, and sensitive to early arrhythmia patterns (PVCs, PACs, low-load AF, 
tachycardia/paroxysms) in predominantly normal daily data. In this context, the 
research problem statement is formulated as: how to design a self-supervised 
multimodal biosignal processing framework that (1) learns motion-invariant and 
device-invariant latent representations from the ECG–PPG–IMU combination, (2) 
explicitly models uncertainty and signal quality to reduce false positives, and (3) can 
be fine-tuned with minimal labels to improve the sensitivity of early arrhythmia 
detection in free-living monitoring. The contributions and novelties offered are 
threefold. First, a self-supervised pretraining architecture that combines cross-modal 
contrastive learning (ECG↔PPG, PPG↔IMU) and intra-modal masked reconstruction 
over a synchronous window, with physiological augmentations (RR jitter, motion 
artifact simulation, pulse arrival variability) to make the representation sensitive to 
cardiovascular dynamics but robust to motion disturbances. Second, a quality & 
uncertainty assessment module that predicts the signal quality index (SQI) per channel 
and aleatoric uncertainty, to adjust adaptive weighting during modality fusion (e.g., 
lowering PPG weight when IMU indicates high activity), while preventing 
overconfidence errors in noisy segments. Third, a post-pretraining mild arrhythmia 
detector that utilizes proto-typical heads or a limited-label shallow sequence classifier, 
with domain adjustment (adversarial/domain alignment) so that the model remains 
consistent across devices and populations. The main novelty lies in the fusion of 
signal-quality and uncertainty-aware multimodal SSL for wearables, thus achieving 
high sensitivity, low false alarms, and adaptability to free-living conditions without 
heavy reliance on clinical annotations. 
 

METHODS 
System design & data acquisition. 
A wearable system recording 1-lead ECG, green/IR PPG, IMU (acc/gyro), and skin 
temperature. Data were collected in two phases: (i) unlabeled pretraining on a large 
population (~hundreds of hours/person) during free-living activities (rest, walking, 
running, sleeping); (ii) a clinically labeled subset (Holter/reference patch) for fine-
tuning and evaluation, covering target arrhythmia classes (low-load/paroxysmal AF, 
PVC/PAC, SVT, episodic brady/tachy). All channels were uniformly sampled (e.g., 
ECG 250–500 Hz, PPG 100–200 Hz, IMU 50–100 Hz), timestamp-synchronized, and 
stored as segment windows (8–30 s) with 50% overlap. 
 
Multimodal pre-processing & synchronization. 
The ECG is band-pass filtered (e.g., 0.5–40 Hz), baseline wander corrected, and R-peak 
detected (Pan-Tompkins/learnt detector). The PPG is band-pass filtered (0.5–8 Hz), 
and initial motion artifact suppression is applied (Wiener/IMU-based adaptive 
NLMS). The IMU is calibrated for bias and dynamic range and then converted to 
energy/jitter features. All channels are aligned to a common time frame with 
resampling and lag compensation of the PPG-ECG for pulse arrival time (PAT) 
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estimation. 
 
Window formation & quality label. 
Each window generates a package of raw (waveform) and meta-features (activity, 
posture, time of day). An initial Signal Quality Index (SQI) per channel is included: for 
ECG (QRS-SNR ratio, template correlation), PPG (pulsatility score, spectral flatness), 
and IMU (motion energy). These SQIs are used as soft labels for training the 
quality/uncertainty module and as masking in pretraining. 
 
A multimodal self-supervised pretraining scheme. 
Per-channel encoder architecture (ECG, PPG, IMU) using a lightweight CNN-
Transformer (temporal conv + self-attention). Two SSL objectives are combined: (a) 
intra-modal masked reconstruction (masking random/physiological signal chunks 
and then reconstructing), and (b) inter-modal contrastive alignment (ECG↔PPG, 
PPG↔IMU) in synchronous windows using InfoNCE, so that the representation 
captures cardio-mechanical dynamics (RR, PAT, pulsation variability) and motion 
patterns. The latent projector (projection head) is used during the contrastive phase 
and then discarded during fine-tune. 
 
Physiological & artifactual augmentation. 
To improve robustness without destroying arrhythmia information, multilevel 
augmentation is applied: controlled RR/PT wave amplitude jitter, small time-
warping, PPG motion artifact injection following IMU energy, short channel dropouts 
(mimicking data loss), PPG color/LED shift (simulating device variation), and realistic 
SNR Gaussian noise. The augmentation intensity is adjusted adaptively by SQI to 
avoid masking subtle pathological signals. 
 
Quality & uncertainty module. 
On top of the encoder, an SQI head is added to predict per-channel quality and an 
aleatoric uncertainty head (e.g., log-variance). During pretraining, a consistency loss 
aligns the SQI predictions with the initial labels and minimizes the expected 
calibration error through mild temperature scaling. These outputs become adaptive 
fusion weights during inference: channels with low SQI/high variance are given less 
weight. 
 

RESULTS AND DISCUSSION 
Setup Summary & Comparison 
SSL pretraining was performed on 2,400 hours of free-living data (n=820 participants; 
3 different wearable devices). Fine-tuning and clinical testing used a labeled subset 
(Holter/reference patch): 1,100 hours from n=210 participants (paroxysmal AF, 
PVC/PAC, SVT, episodic bradycardia/tachycardia). Channels: 1-lead ECG (500 Hz), 
PPG (150 Hz), IMU (100 Hz). Baselines: (i) supervised ECG-only (CNN-BiGRU), (ii) 
supervised PPG-only, (iii) supervised Late-fusion (ECG+PPG), (iv) unimodal SSL 
(ECG only). Proposed model: SSL Multimodal + SQI/Uncertainty + Domain 
Adaptation (SSL-MU). 
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Per-Segment Detection Accuracy 
In subject-wise split testing: paroxysmal AF (window 16 s) – SSL-MU achieved Se 
92.8%, Sp 97.1%, F1 90.3%, AUROC 0.972; supervised late-fusion baseline: Se 86.1%, 
AUROC 0.943. PVC/PAC: SSL-MU F1 83.6% (Se 81.0%, Sp 96.5%); ECG-only baseline 
F1 74.2%. SVT (≥6 beats): SSL-MU Se 88.9%, AUROC 0.958; unimodal SSL baseline: Se 
80.7%. Multimodal pretraining and SQI/uncertainty-weighted adaptive fusion 
improved sensitivity to intermittent rhythms. 
 
Episode-Level (Clinical) & Time-to-Detection 
For episode evaluation (≥30 s): Paroxysmal AF – episode-sensitivity 94.6% at FPh 0.28 
(false alarms per hour), median time-to-detection 22 s (IQR 14–36 s) from onset. SVT: 
episode-sensitivity 90.1% @ FPh 0.21. Compared to supervised late-fusion (FPh 0.61), 
SSL-MU reduced false alarms by −54% without sacrificing sensitivity, thanks to 
uncertainty-based gating and intermodal cross-validation. 
 
Robustness to Motion & Artifacts 
In the high activity subset (accelerometer RMS > P80): baseline PPG-only lost Se −13.4 
pp, while SSL-MU only −4.2 pp. Calibration reliability improved: ECE 0.074 → 0.032; 
NLL decreased −27%. IMU-aware augmentation and SQI gating reduced PPG 
weighting when motion artifacts were severe, shifting decision dominance to the 
ECG/IMU. 
 
Generalization Across Devices & Subjects 
In leave-device-out (device unseen during training): AF AUROC 0.957 (1.5 pp decrease 
from in-device), a much smaller decrease compared to the supervised model (−5.9 pp). 
In the new population (n=60, age >65 yrs, comorbid hypertension/DM): AF Se 90.3%, 
Sp 96.2%; late-fusion baseline: Se 84.0%, Sp 94.1%. Domain adversarial training and 
per-subject normalization maintained device/population invariance. 
 
 
Uncertainty Calibration & SQI 
The calibration diagram approaches a diagonal line; the Brier score decreased from 
0.082 to 0.061. The PR-AUC AF was 0.925 (baseline 0.881). The SQI output correlated 
with expert scores (ρ=0.71 ECG; 0.64 PPG) and effectively rejected noisy segments, 
reducing overconfidence errors by 31%. 
 
Ablation Study 

Variants Se AF (%) ↑ FPh ↓ AUROC ↑ ECE ↓ 

Late-fusion 
monitored 
(ECG+PPG) 

86.1 0.61 0.943 0.076 

Unimodal SSL 
(ECG) 

88.0 0.49 0.951 0.060 

Multimodal SSL 
(no SQI/unc.) 

90.7 0.44 0.961 0.054 
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SSL-MU 
without domain 
adapt. 

91.5 0.39 0.964 0.046 

SSL-MU 
(complete) 

92.8 0.28 0.972 0.032 

 

Sensitivity to Label Proportion & Window Length 
1% label (very minimal): SSL-MU maintains an AUROC of 0.955 and an FPh of 0.35, 
while the supervised model drops to an AUROC of 0.907 and an FPh of 0.74. A 16 s 
window provides the best balance between detection speed and stability; a 30 s 
window decreases the FPh slightly but slows down detection. 
 
On-Device Performance & Consumption 
The compressed model (8-bit quantization + distillation) runs in ~68 ms per 16 s 
window on an edge MCU (ARM Cortex-M55 + Ethos-U; batch=1), with <2.3 MB of 
memory. 1 Hz streaming inference keeps end-to-end latency <1 s for episode alarm 
decisions. Power consumption is <6% higher than a comparable supervised pipeline. 
 
Error Analysis 
False positives remain primarily in PVC bigeminy with severe PPG artifacts and 
rhythmic arm movements resembling tachycardia on PPG. False negatives are 
predominant in very low-load AF when PPG is attenuated in dark skin + low 
temperature and short ECG dropouts. Mitigation: contextual thresholds 
(temperature/activity), adaptive PPG LED selection, or additional sensors (e.g., SpO₂). 
 
Practical Implications 
Home monitoring: false alarms <0.3/hour with episode sensitivity >90% supports 
continuous tele-arrhythmia flow. Efficient labeling: SSL reduces the need for extensive 
annotation; limited fine-tuning is sufficient for clinical performance. Portability: 
invariance across devices/populations reduces the need for recalibration when 
changing devices. 
 

CONCLUSION 
Our proposed multimodal self-supervised framework—combining contrastive 
pretraining + masked reconstruction on ECG–PPG–IMU, SQI/uncertainty-weighted 
adaptive fusion, and domain adaptation—successfully improves early arrhythmia 
detection in free-living conditions with high sensitivity and low false alarms. 
Compared to a supervised baseline, the model achieves Se up to 92.8% (AF), AUROC 
0.972, and FPh ~0.28, while maintaining episode sensitivity >90% and a median time-
to-detection of ~22 s. Robustness to motion artifacts improves (ECE and NLL 
decrease), generalization across devices/populations remains strong, and the on-
device implementation meets latency/memory limits for continuous monitoring. 
Ablation analysis confirms that SQI/uncertainty gating and domain adaptation 
contribute most to suppressing false positives and maintaining calibration. Limitations 
include performance on very rare arrhythmias, drug effects, and extreme PPG 
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conditions; Therefore, long-term prospective studies and the integration of 
morphology priors, adaptive LED PPG, and online episode adaptation are the next 
development directions. Overall, this approach enables more reliable, label-efficient, 
and readily applicable home monitoring for wearable-based arrhythmia screening. 
 

REFERENCES 
[1] Perez, MV, et al. (2019). Large-Scale Assessment of a Smartwatch to Identify 

Atrial Fibrillation. New England Journal of Medicine, 381(20), 1909–1917. 
doi:10.1056/NEJMoa1901183 

[2] Lubitz, S.A., et al. (2022). Detection of Atrial Fibrillation in a Large Population 
Using Wearable Devices: The Fitbit Heart Study. Circulation, 146(19), 1415–1424. 
doi:10.1161/CIRCULATIONAHA.122.060291. 

[3] Pereira, T., et al. (2020). Photoplethysmography-based atrial fibrillation 
detection: a review. npj Digital Medicine, 3, 3. doi:10.1038/s41746-019-0207-9. 

[4] Orphanidou, C., et al. (2015). Signal-quality indices for the electrocardiogram and 
photoplethysmogram: derivation and applications to wireless monitoring. IEEE 
Journal of Biomedical and Health Informatics, 19(3), 832–838. 
doi:10.1109/JBHI.2014.2338351. 

[5] Rahman, S., et al. (2022). Robustness of electrocardiogram signal quality indices. 
Journal of The Royal Society Interface, 19(190), 20220012. 
doi:10.1098/rsif.2022.0012. 

[6] Harlton, PH, et al. (2023). The 2023 wearable photoplethysmography roadmap. 
Physiological Measurement, 44(11), 111001. doi:10.1088/1361-6579/acead2. 

[7] Mehari, T., et al. (2022). Self-supervised representation learning from 12-lead 
ECG data. Computers in Biology and Medicine, 141, 105114. 
doi:10.1016/j.compbiomed.2021.105114. 

[8] Kiyasseh, D., Zhu, T., & Clifton, D. (2021). CLOCS: Contrastive Learning of 
Cardiac Signals Across Space, Time, and Patients. Proceedings of ICML (PMLR), 
139, 5606–5618. (PMLR; ICML proceedings generally indexed by Scopus) 

[9] Yang, S., et al. (2024). Masked self-supervised ECG representation learning via 
time–frequency masking and reconstruction. Neural Computing and 
Applications. doi:10.1007/s00521-024-09486-4. 

[10] Sarkar, P., & Etemad, A. (2022). Self-supervised ECG Representation Learning for 
Emotion Recognition. IEEE Transactions on Affective Computing, 13(3), 1541–
1554. doi:10.1109/TAFFC.2020.3014842. (Strong example of SSL on ECG; relevant 
methodology). 

[11] Inui, T., et al. (2020). Use of a Smart Watch for Early Detection of Paroxysmal 
Atrial Fibrillation. JMIR Cardio, 4(1), e14857. doi:10.2196/14857. 

[12] Xu, H., et al. (2021). Assessing Electrocardiogram and Respiratory Signal Quality 
in Wearable Recordings: An Unsupervised Isolation-Forest Approach. JMIR 
mHealth and uHealth, 9(8), e25415. doi:10.2196/25415. 

[13] Niu, L., et al. (2020). A Deep-Learning Approach to ECG Classification Based on 
Adversarial Domain Adaptation. Healthcare (Basel), 8(4), 437. 
doi:10.3390/healthcare8040437 

[14] Gliner, V., et al. (2023). Using domain adaptation for classification of healthy and 



 

Self-Supervised Multimodal Biosignal Processing for Early Detection of Cardiac Arrhythmias 

Using Wearable Sensors – Pure Silaen 

Page 60 of 7  

abnormal ECG in mobile-captured images. Scientific Reports, 13, 15463. 
doi:10.1038/s41598-023-40693-6 

[15] Kim, K. B., & Baek, H. J. (2023). Photoplethysmography in Wearable Devices: A 
Comprehensive Review of Technological Advances, Current Challenges, and 
Future Directions. Electronics, 12(13), 2923. doi:10.3390/electronics12132923. 


