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This paper proposes a Reinforcement Learning-based Model Predictive
Controller (RL-MPC) for mobile robots operating in dynamic
environments with stringent safety constraints. The key challenges
addressed include model/perception uncertainty, moving obstacles,
and real-time computational requirements. The proposed framework
combines (i) a learned dynamics model with uncertainty estimation, (ii)
a risk-aware MPC (chance constraints/CVaR) to enforce violation
probabilities below a predefined threshold, and (iii) a Control Barrier
Function (CBF) as a safety layer that projects actions to stay within the
safe set. Policy learning (PPO/SAC) is tied to reward shaping and
safety shielding, while a sim-to-real strategy with domain

Real-Time Optimization. randomization enhances robustness during transfers. Evaluation on
three scenarios—solid static obstacles, moving obstacles, and multi-
agent traffic—shows that RL-MPC reduces the safety violation rate to
<2% (compared to 2.8-12.3% in the baseline), increases the minimum
distance to ~0.2 m in the dynamic scenario, and improves the success
rate to 95-99% without significantly lengthening the path or energy.
The computational overhead increases by ~3-5 ms compared to
classical MPC while still meeting the 20 ms per cycle limit. The ablation
results confirm the dominant role of CBF and risk-based constraints in
suppressing near-collisions. Overall, RL-MPC presents a favorable
trade-off between safety, efficiency, and implementation feasibility for
online autonomous operations in changing environments.
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INTRODUCTION
The development of mobile robots for service, logistics, and inspection applications
demands controllers that are not only optimal but also safe when operating in dynamic
environments with model uncertainty, perception limitations, and the presence of
moving obstacles. Model Predictive Control (MPC) excels because it can handle
constraints explicitly and plan actions ahead, but its performance deteriorates when
the dynamic model deviates from reality, while adaptive Reinforcement Learning (RL)
approaches are often sample-inefficient and risk violating safety constraints during
exploration. The research gap arises because most studies only examine statically
tuned MPC in semi-dynamic environments or RL embedded with soft constraints,
without online safety mechanisms guaranteed against moving obstacles, perception
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uncertainty, and actuation delays; furthermore, the integration of safe RL and MPC is
often offline, lacks risk quantification (e.g., chance constraints), and rarely
demonstrates real-time implementation on embedded computing devices. Closing this
gap, this paper proposes a Reinforcement Learning-based Model Predictive Controller
(RL-MPC) that combines learning-based dynamics identification with uncertainty
quantization, risk-aware predictive optimization, and an explicit safety filter (e.g., via
a control barrier function/robust tube) that acts as a final safeguard while the RL
policy explores. The research contributions include: (i) a hierarchical framework that
aligns RL policy updates with a hard-bounded MPC so that exploration remains safe
against constraints on position, velocity, and minimum distance between agents; (ii) a
learned dynamic model with uncertainty estimates fed to a risk-sensitive/chance-
constrained MPC to keep violation probabilities below a defined threshold; (iii) an
end-to-end perception-to-action that is robust to sensor limitations via predictive
replanning on a sliding horizon; and (iv) a computationally efficient design (warm-
start, lightweight solvers) that enables real-time operation. The main novelty lies in
combining actively learning safe RL and uncertainty-aware MPC with explicit safety
constraints in a single closed loop that works online in a truly dynamic environment,
providing operational safety guarantees while improving navigation performance and
energy efficiency —an advance over previous approaches that either separate learning
and control or only enforce safety empirically without probabilistic guarantees.

METHODS
This research proposes a methodology for the development of a Reinforcement
Learning-Based Model Predictive Controller (RL-MPC) applied to a mobile robot in a
dynamic environment with safety constraints. The methodology is structured to be
replicable on differential or omnidirectional robot platforms, and can be run in real-
time on embedded computing devices.

System Model and Problem Formulation

The robot is modeled discretely as x_{k+1}=f(x_k,u_k,w_k), where x represents the
state (position, orientation, velocity), u is the control (linear/angular velocity), and w
is the disturbance. The environment contains static and moving obstacles, while the
control objective is to minimize tracking costs and energy while adhering to safety
constraints such as speed limits and minimum safe distances. This problem is
formulated as a risk-based optimization with chance constraints on model uncertainty.

Hierarchical RL-MPC Architecture with Safety Layer

The approach uses a three-layer architecture: (i) Perception and Estimation to detect
moving objects, (ii) RL Planner that generates target velocity references, and (iii) Risk-
Aware MPC as the executor. An additional layer in the form of Control Barrier
Function (CBF) is used to maintain system safety in real-time.

Perception and Uncertainty Estimation
Lidar sensors, cameras, and an IMU are combined using an Extended Kalman Filter
(EKF) to estimate the position of the robot and moving obstacles. Uncertainty is

Reinforcement Learning-Based Model Predictive Controller for Mobile Robots in Dynamic
Environments with Safety Constraints — Olivia Sulistina

Page 69 of 8



represented as covariance, which is used to update adaptive safety boundaries based
on distance constraints.

Dynamics Learning and Model Calibration

The dynamic model f is updated using a learned model (neural network or Gaussian
Process) to map state changes based on control inputs. Training is performed online
using an experience buffer, with regularization to maintain model stability and
interpretability.

Formulating a Risk-Aware MPC

The MPC is optimized with cost functions for tracking, smooth control, and a penalty
for distance to obstacles. Safety constraints are implemented as chance constraints with
probabilistic bounds on safety distance violations. The solution is performed with a
fast Quadratic Programming (QP)-based solver.

Safe Reinforcement Learning (Policy Layer)

The reinforcement learning policy generates action references for the MPC. The
reward function is designed to balance efficiency, progress, and safety. The PPO or
SAC algorithm is used with exploration constraints through a CBF-based safety
shielding mechanism.

Control Barrier Function (CBF) Integration
CBF is used as a safety layer by finding the minimum control correction that ensures
safety conditions are met, without sacrificing the global optimality of MPC.

Sim-to-Real Training and Domain Randomization

Initial training was performed in a simulator with added sensor noise and varying
environmental parameters. Domain randomization ensured the robustness of the RL
policy when transferred to the real world, followed by online fine-tuning with a
multilevel exploration threshold.

Real-Time Computing Strategy

The system pipeline runs at 50-100 Hz with stages of estimation, model update, RL
action generation, and MPC solution. Warm-start and early termination are used to
ensure real-time control.

Experimental Design and Evaluation

Experiments were conducted on three scenarios (static, moving, and multi-agent
obstacles) with classical MPC baselines, pure RL, and a hybrid without risk
constraints. Evaluation metrics included safety violation rate, minimum distance,
travel time, energy, and computation time. Statistical analysis was used to assess the
significance of the results.

RESULTS AND DISCUSSION
This section presents the quantitative results and qualitative analysis of the
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implementation of the Reinforcement Learning (RL) based Model Predictive
Controller.-MPC) on mobile robots. We compare three baselines: (i) Classic MPC
(without learning), (ii) Pure RL with minimal shielding, and (iii) Proposed RL-MPC.
The evaluation was conducted on three scenarios: S1 (solid static obstacle), S2 (moving
obstacle), and S3 (multi-vehicle traffic).-agent). Key metrics include safety violation
rate, minimum distance, success ratio, path length, energy, and computation time per
cycle.

Safety Violation Rate (%)

MPC Klaslk RL Murni Usulan; RL-MPC

Figure 1. Comparison of Safety Violation Rate in three scenarios.

Table 1. Quantitative results per scenario (S1: Solid Static).

Metric MPC Classic Pure RL Proposed: RL-
MPC

Safety  Violation | 2.8 4.5 0.4

Rate (%)

Min Distance (m) | 0.32 0.28 0.52

Success Rate (%) | 96.0 92.0 99.0

Path Length (m) | 284 27.9 27.5

Energy (arb.) 1.0 0.98 0.93

Compute  Time | 12.1 8.6 154

per Cycle (ms)

Table 2. Quantitative results per scenario (52: Moving Obstacles).

Metric MPC Classic Pure RL Proposed: RL-
MPC

Safety  Violation | 5.9 9.8 1.1

Rate (%)
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Min Distance (m) | 0.24 0.2 0.44
Success Rate (%) | 90.0 84.0 97.0
Path Length (m) | 31.2 30.1 30.0
Energy (arb.) 1.08 1.02 0.98
Compute  Time | 12.9 8.9 16.6
per Cycle (ms)
Table 3. Quantitative results per scenario (S3: Multi-Agent).
Metric MPC Classic Pure RL Proposed: RL-
MPC
Safety  Violation | 8.7 12.3 1.9
Rate (%)
Min Distance (m) | 0.18 0.16 0.38
Success Rate (%) | 84.0 78.0 95.0
Path Length (m) | 34.8 33.6 33.9
Energy (arb.) 1.16 1.1 1.03
Compute  Time | 13.8 9.2 18.1
per Cycle (ms)
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Figure 2. Comparison of Success Rates in three scenarios
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Figure 3. Comparison of Minimum Distance (Min Distance) in three scenarios.

Ablation Study. We evaluate the contribution of key architectural components to the
most challenging S3 scenarios. Results show that CBF provides the greatest reduction
in violations; chance constraints and cost awareness-uncertainty increases minimum
distance and stability; domain randomization helps generalization when transferring
to new conditions.

Table 4. Ablation Study on S3 (Multi-Agent).

Variants Violation Rate | Success Rate | Min Distance | Avg Compute
(%) (%) (m) (ms)

- CBF 4.4 90 0.26 16.0

- Chance | 3.7 92 0.3 16.8

Constraints

- Domain | 2.8 93 0.33 17.2

Randomization

- Uncertainty- | 2.6 94 0.34 17.9

aware Cost

Complete 1.9 95 0.38 18.1

Proposal

Discussion. (1) Safety: RL-MPC consistently suppresses safety violations in all
scenarios (£2%) compared to classical MPC (2.8-8.7%) and pure RL (4.5-12.3%). The
increase in minimum distance of ~0.2 m in S2-S3 demonstrates the effectiveness of
chance constraints and CBF. (2) Task Performance: RL-MPC combines route efficiency
with safe maneuvers, resulting in a 95-99% success rate and a path length no longer
than the baseline. (3) Energy Cost & Smoothness: MPC jerk and coordination penalties
reduce the relative energy by 3-8% compared to classical MPC. (4) Real
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Computation-Time: Overhead of 3-5 ms compared to classic MPC is still within the 20
ms target, thanks to warm-start and linearization caching. (5) Robustness: Ablation
shows the greatest degradation when CBF is removed, confirming CBF's function as
an 'emergency brake' that maintains the safe set invariance when obstacle estimates
change suddenly.-arrive. Overall, the integration of adaptive learning and predictive
optimization is-risk of generating trade-a favorable trade-off between safety,
efficiency, and computational feasibility for real operations-time in a dynamic
environment.

CONCLUSION

This research demonstrates that combining safety-aware reinforcement learning with
Model Predictive Control (RL-MPC) can improve the navigation performance of a
mobile robot in dynamic environments while maintaining operational safety online.
Compared to classical MPC and pure RL baselines, the proposed approach
consistently reduces the safety violation rate, increases the minimum distance to
obstacles, and improves the goal success ratio—while maintaining real-time
compliance with computational overhead. This success is achieved through four key
pillars: (i) a learned dynamics model with uncertainty estimates feeding into the MPC,
(ii) a risk-aware formulation (chance constraints/CVAR) that suppresses violation
probabilities, (iii) a Control Barrier Function (CBF) layer as an emergency brake that
maintains the safety set invariance when estimates change rapidly, and (iv) a
hierarchical perception-to-action architecture that combines RL planning with efficient
warm-start MPC execution. Practically, RL-MPC presents a favorable trade-off
between safety, path/energy efficiency, and feasibility of implementation on
embedded devices; ablation studies confirm that CBF and risk-based constraints are
the most impactful components in suppressing near-collisions. The main limitations
lie in the sensitivity to the quality of perception estimates under extreme traffic density
and the increase in computation time at long horizons. Future work directions include:
integration of multi-agent intent predictors, learning more sample-efficient end-to-end
perception representations, automatic adaptation of the curriculum on risk, and
extension to heterogeneous robot platforms and large-scale field studies to test the
generalizability of the policy under more diverse real-world conditions.
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