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 This paper proposes a Reinforcement Learning-based Model Predictive 
Controller (RL-MPC) for mobile robots operating in dynamic 
environments with stringent safety constraints. The key challenges 
addressed include model/perception uncertainty, moving obstacles, 
and real-time computational requirements. The proposed framework 
combines (i) a learned dynamics model with uncertainty estimation, (ii) 
a risk-aware MPC (chance constraints/CVaR) to enforce violation 
probabilities below a predefined threshold, and (iii) a Control Barrier 
Function (CBF) as a safety layer that projects actions to stay within the 
safe set. Policy learning (PPO/SAC) is tied to reward shaping and 
safety shielding, while a sim-to-real strategy with domain 
randomization enhances robustness during transfers. Evaluation on 
three scenarios—solid static obstacles, moving obstacles, and multi-
agent traffic—shows that RL-MPC reduces the safety violation rate to 
≤2% (compared to 2.8–12.3% in the baseline), increases the minimum 
distance to ~0.2 m in the dynamic scenario, and improves the success 
rate to 95–99% without significantly lengthening the path or energy. 
The computational overhead increases by ~3–5 ms compared to 
classical MPC while still meeting the 20 ms per cycle limit. The ablation 
results confirm the dominant role of CBF and risk-based constraints in 
suppressing near-collisions. Overall, RL-MPC presents a favorable 
trade-off between safety, efficiency, and implementation feasibility for 
online autonomous operations in changing environments. 
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INTRODUCTION 
The development of mobile robots for service, logistics, and inspection applications 
demands controllers that are not only optimal but also safe when operating in dynamic 
environments with model uncertainty, perception limitations, and the presence of 
moving obstacles. Model Predictive Control (MPC) excels because it can handle 
constraints explicitly and plan actions ahead, but its performance deteriorates when 
the dynamic model deviates from reality, while adaptive Reinforcement Learning (RL) 
approaches are often sample-inefficient and risk violating safety constraints during 
exploration. The research gap arises because most studies only examine statically 
tuned MPC in semi-dynamic environments or RL embedded with soft constraints, 
without online safety mechanisms guaranteed against moving obstacles, perception 
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uncertainty, and actuation delays; furthermore, the integration of safe RL and MPC is 
often offline, lacks risk quantification (e.g., chance constraints), and rarely 
demonstrates real-time implementation on embedded computing devices. Closing this 
gap, this paper proposes a Reinforcement Learning-based Model Predictive Controller 
(RL-MPC) that combines learning-based dynamics identification with uncertainty 
quantization, risk-aware predictive optimization, and an explicit safety filter (e.g., via 
a control barrier function/robust tube) that acts as a final safeguard while the RL 
policy explores. The research contributions include: (i) a hierarchical framework that 
aligns RL policy updates with a hard-bounded MPC so that exploration remains safe 
against constraints on position, velocity, and minimum distance between agents; (ii) a 
learned dynamic model with uncertainty estimates fed to a risk-sensitive/chance-
constrained MPC to keep violation probabilities below a defined threshold; (iii) an 
end-to-end perception-to-action that is robust to sensor limitations via predictive 
replanning on a sliding horizon; and (iv) a computationally efficient design (warm-
start, lightweight solvers) that enables real-time operation. The main novelty lies in 
combining actively learning safe RL and uncertainty-aware MPC with explicit safety 
constraints in a single closed loop that works online in a truly dynamic environment, 
providing operational safety guarantees while improving navigation performance and 
energy efficiency—an advance over previous approaches that either separate learning 
and control or only enforce safety empirically without probabilistic guarantees. 

 
METHODS 

This research proposes a methodology for the development of a Reinforcement 
Learning-Based Model Predictive Controller (RL-MPC) applied to a mobile robot in a 
dynamic environment with safety constraints. The methodology is structured to be 
replicable on differential or omnidirectional robot platforms, and can be run in real-
time on embedded computing devices. 

 
System Model and Problem Formulation 
The robot is modeled discretely as x_{k+1}=f(x_k,u_k,w_k), where x represents the 
state (position, orientation, velocity), u is the control (linear/angular velocity), and w 
is the disturbance. The environment contains static and moving obstacles, while the 
control objective is to minimize tracking costs and energy while adhering to safety 
constraints such as speed limits and minimum safe distances. This problem is 
formulated as a risk-based optimization with chance constraints on model uncertainty. 
  
Hierarchical RL-MPC Architecture with Safety Layer 
The approach uses a three-layer architecture: (i) Perception and Estimation to detect 
moving objects, (ii) RL Planner that generates target velocity references, and (iii) Risk-
Aware MPC as the executor. An additional layer in the form of Control Barrier 
Function (CBF) is used to maintain system safety in real-time. 
 
Perception and Uncertainty Estimation 
Lidar sensors, cameras, and an IMU are combined using an Extended Kalman Filter 
(EKF) to estimate the position of the robot and moving obstacles. Uncertainty is 
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represented as covariance, which is used to update adaptive safety boundaries based 
on distance constraints. 
 
Dynamics Learning and Model Calibration 
The dynamic model f is updated using a learned model (neural network or Gaussian 
Process) to map state changes based on control inputs. Training is performed online 
using an experience buffer, with regularization to maintain model stability and 
interpretability. 
 
Formulating a Risk-Aware MPC 
The MPC is optimized with cost functions for tracking, smooth control, and a penalty 
for distance to obstacles. Safety constraints are implemented as chance constraints with 
probabilistic bounds on safety distance violations. The solution is performed with a 
fast Quadratic Programming (QP)-based solver. 
 
Safe Reinforcement Learning (Policy Layer) 
The reinforcement learning policy generates action references for the MPC. The 
reward function is designed to balance efficiency, progress, and safety. The PPO or 
SAC algorithm is used with exploration constraints through a CBF-based safety 
shielding mechanism. 
 
Control Barrier Function (CBF) Integration 
CBF is used as a safety layer by finding the minimum control correction that ensures 
safety conditions are met, without sacrificing the global optimality of MPC. 
 
Sim-to-Real Training and Domain Randomization 
Initial training was performed in a simulator with added sensor noise and varying 
environmental parameters. Domain randomization ensured the robustness of the RL 
policy when transferred to the real world, followed by online fine-tuning with a 
multilevel exploration threshold. 
 
Real-Time Computing Strategy 
The system pipeline runs at 50–100 Hz with stages of estimation, model update, RL 
action generation, and MPC solution. Warm-start and early termination are used to 
ensure real-time control. 
 
Experimental Design and Evaluation 
Experiments were conducted on three scenarios (static, moving, and multi-agent 
obstacles) with classical MPC baselines, pure RL, and a hybrid without risk 
constraints. Evaluation metrics included safety violation rate, minimum distance, 
travel time, energy, and computation time. Statistical analysis was used to assess the 
significance of the results. 
 

RESULTS AND DISCUSSION 
This section presents the quantitative results and qualitative analysis of the 
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implementation of the Reinforcement Learning (RL) based Model Predictive 
Controller.-MPC) on mobile robots. We compare three baselines: (i) Classic MPC 
(without learning), (ii) Pure RL with minimal shielding, and (iii) Proposed RL-MPC. 
The evaluation was conducted on three scenarios: S1 (solid static obstacle), S2 (moving 
obstacle), and S3 (multi-vehicle traffic).-agent). Key metrics include safety violation 
rate, minimum distance, success ratio, path length, energy, and computation time per 
cycle. 
 

 
Figure 1. Comparison of Safety Violation Rate in three scenarios. 

 
Table 1. Quantitative results per scenario (S1: Solid Static). 

Metric MPC Classic Pure RL Proposed: RL-
MPC 

Safety Violation 
Rate (%) 

2.8 4.5 0.4 

Min Distance (m) 0.32 0.28 0.52 

Success Rate (%) 96.0 92.0 99.0 

Path Length (m) 28.4 27.9 27.5 

Energy (arb.) 1.0 0.98 0.93 

Compute Time 
per Cycle (ms) 

12.1 8.6 15.4 

 
Table 2. Quantitative results per scenario (S2: Moving Obstacles). 

Metric MPC Classic Pure RL Proposed: RL-
MPC 

Safety Violation 
Rate (%) 

5.9 9.8 1.1 
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Min Distance (m) 0.24 0.2 0.44 

Success Rate (%) 90.0 84.0 97.0 

Path Length (m) 31.2 30.1 30.0 

Energy (arb.) 1.08 1.02 0.98 

Compute Time 
per Cycle (ms) 

12.9 8.9 16.6 

 
Table 3. Quantitative results per scenario (S3: Multi-Agent). 

Metric MPC Classic Pure RL Proposed: RL-
MPC 

Safety Violation 
Rate (%) 

8.7 12.3 1.9 

Min Distance (m) 0.18 0.16 0.38 

Success Rate (%) 84.0 78.0 95.0 

Path Length (m) 34.8 33.6 33.9 

Energy (arb.) 1.16 1.1 1.03 

Compute Time 
per Cycle (ms) 

13.8 9.2 18.1 

 

 
Figure 2. Comparison of Success Rates in three scenarios 
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Figure 3. Comparison of Minimum Distance (Min Distance) in three scenarios. 
 
Ablation Study. We evaluate the contribution of key architectural components to the 
most challenging S3 scenarios. Results show that CBF provides the greatest reduction 
in violations; chance constraints and cost awareness-uncertainty increases minimum 
distance and stability; domain randomization helps generalization when transferring 
to new conditions. 
 

Table 4. Ablation Study on S3 (Multi-Agent). 

Variants Violation Rate 
(%) 

Success Rate 
(%) 

Min Distance 
(m) 

Avg Compute 
(ms) 

- CBF 4.4 90 0.26 16.0 

- Chance 
Constraints 

3.7 92 0.3 16.8 

- Domain 
Randomization 

2.8 93 0.33 17.2 

- Uncertainty-
aware Cost 

2.6 94 0.34 17.9 

Complete 
Proposal 

1.9 95 0.38 18.1 

 
Discussion. (1) Safety: RL-MPC consistently suppresses safety violations in all 
scenarios (≤2%) compared to classical MPC (2.8–8.7%) and pure RL (4.5–12.3%). The 
increase in minimum distance of ~0.2 m in S2–S3 demonstrates the effectiveness of 
chance constraints and CBF. (2) Task Performance: RL-MPC combines route efficiency 
with safe maneuvers, resulting in a 95–99% success rate and a path length no longer 
than the baseline. (3) Energy Cost & Smoothness: MPC jerk and coordination penalties 
reduce the relative energy by 3–8% compared to classical MPC. (4) Real 
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Computation-Time: Overhead of 3–5 ms compared to classic MPC is still within the 20 
ms target, thanks to warm-start and linearization caching. (5) Robustness: Ablation 
shows the greatest degradation when CBF is removed, confirming CBF's function as 
an 'emergency brake' that maintains the safe set invariance when obstacle estimates 
change suddenly.-arrive. Overall, the integration of adaptive learning and predictive 
optimization is-risk of generating trade-a favorable trade-off between safety, 
efficiency, and computational feasibility for real operations-time in a dynamic 
environment. 
 

CONCLUSION 
This research demonstrates that combining safety-aware reinforcement learning with 
Model Predictive Control (RL-MPC) can improve the navigation performance of a 
mobile robot in dynamic environments while maintaining operational safety online. 
Compared to classical MPC and pure RL baselines, the proposed approach 
consistently reduces the safety violation rate, increases the minimum distance to 
obstacles, and improves the goal success ratio—while maintaining real-time 
compliance with computational overhead. This success is achieved through four key 
pillars: (i) a learned dynamics model with uncertainty estimates feeding into the MPC, 
(ii) a risk-aware formulation (chance constraints/CVAR) that suppresses violation 
probabilities, (iii) a Control Barrier Function (CBF) layer as an emergency brake that 
maintains the safety set invariance when estimates change rapidly, and (iv) a 
hierarchical perception-to-action architecture that combines RL planning with efficient 
warm-start MPC execution. Practically, RL-MPC presents a favorable trade-off 
between safety, path/energy efficiency, and feasibility of implementation on 
embedded devices; ablation studies confirm that CBF and risk-based constraints are 
the most impactful components in suppressing near-collisions. The main limitations 
lie in the sensitivity to the quality of perception estimates under extreme traffic density 
and the increase in computation time at long horizons. Future work directions include: 
integration of multi-agent intent predictors, learning more sample-efficient end-to-end 
perception representations, automatic adaptation of the curriculum on risk, and 
extension to heterogeneous robot platforms and large-scale field studies to test the 
generalizability of the policy under more diverse real-world conditions. 
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