##plugins.themes.bootstrap3.article.main##

Harly Wijaya

Abstract

We propose and evaluate a reconfigurable metasurface antenna at D band (f₀≈140 GHz) for short-range 6G applications. The main problem is in sub-THz.—High FSPL, component losses, and beam steering limitations are addressed through a loss-aware co-design that integrates unit-cells (2-bit MEMS and continuous LC), feed/illumination, and radiation-friendly bias networks, along with
multi-objective beam codebook optimization (gain maximization, SLL minimization, and scan loss). Full EM simulation results on a
transmitarray (TA) architecture show dB at 134–146 GHz (≈8.6%), realized peak gain of 31.8 dBi (aperture efficiency ~38–43%),
best SLL of −14.1 dB, beam pointing error ≤1.1°, and beam steering up to ±40° with worst-case scan loss of 3.4 dB; the LC variant provides more precise pointing (≈0.4°). Compared to the reflectarray baseline, TA excels in wide scans due to minimal feed blockage. Link-level estimations show support for 64-QAM (10–30 m) and 256-QAM (10–20 m) under LOS conditions. This approach validates the feasibility of an efficient and realizable sub-THz reconfigurable antenna for 6G extreme

##plugins.themes.bootstrap3.article.details##

How to Cite
Wijaya, H. (2025). Design of Reconfigurable Metasurface Antenna for 6G in sub-THz band . Journal of Electrical Engineering, 3(03), 76–82. https://doi.org/10.54209/elimensi.v3i03.394
References
[1] S. Gharbieh, J. Milbrandt, B. Reig, D. Mercier, M. Allain, dan A. Clemente, “Design of a binary programmable transmitarray based on phase change material for beam steering applications in D-band,” Scientific Reports, vol. 14, Art. 2966, 2024, doi: 10.1038/s41598-024-53150-9
[2] K. Kato dkk., “Reconfigurable anomalous reflectors with stretchable elastic substrates at 140 GHz band,” Nanophotonics, 2023, doi: 10.1515/nanoph-2022-0758.
[3] X. He dkk., “140-GHz High-Efficiency Low-Profile Reflectarray Antenna Using Heterogeneous Design Strategy,” IEEE Trans. Antennas Propag., Early Access, 2024, doi: 10.1109/TAP.2023.3319112.
[4] Z.-W. Miao dkk., “A D-Band Dual-Polarized High-Gain LTCC-Based Reflectarray Antenna Using SIW Magnetoelectric-Dipole Elements,” Micromachines, vol. 15, no. 12, Art. 1511, 2024, doi: 10.3390/mi15121511.
[5] S. Farjana dkk., “Realizing a 140 GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining,” J. Infrared Millim. Terahertz Waves, 2021, doi: 10.1007/s10762-021-00812-8
[6] R. Guirado, G. Perez-Palomino, M. Ferreras, E. Carrasco, dan M. Cano-Garcia, “Dynamic Modeling of Liquid Crystal-Based Metasurfaces and Its Application to Reducing Reconfigurability Times,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 11847–11857, Dec. 2022, doi: 10.1109/TAP.2022.3209734.
[7] M. Sazegar dkk., “Beam Steering Transmitarray Using Tunable Frequency Selective Surface With Integrated Ferroelectric Varactors,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5690–5699, Dec. 2012, doi: 10.1109/TAP.2012.2213057.
[8] A. Clemente, L. Dussopt, R. Sauleau, P. Potier, dan P. Pouliguen, “Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5017–5027, Oct. 2013, doi: 10.1109/TAP.2013.2271493.
[9] J. Y. Lau dan S. V. Hum, “A Wideband Reconfigurable Transmitarray Element,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1303–1311, Mar. 2012, doi: 10.1109/TAP.2011.2180475.
[10] F. Diaby, A. Clemente, R. Sauleau, K. T. Pham, dan L. Dussopt, “2-Bit Reconfigurable Unit-Cell and Electronically Steerable Transmitarray at Ka-Band,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 5003–5008, Jun. 2020, doi: 10.1109/TAP.2019.2955655.
[11] C.-X. Liu dkk., “Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals,” Advanced Optical Materials, vol. 9, 2100932, 2021, doi: 10.1002/adom.202100932.
[12] Z. Qi, X. Li, J. Chu, J. Xiao, dan H. Zhu, “High-gain cavity backed patch antenna arrays at 140 GHz based on LTCC technology,” Int. J. Microwave and Wireless Technologies, vol. 11, no. 8, pp. 829–834, Oct. 2019, doi: 10.1017/S175907871900031X.
[13] C. Huang, W. Pan, dan X. Luo, “Low-loss Circularly Polarized Transmitarray for Beam Steering Application,” IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4471–4476, Oct. 2016, doi: 10.1109/TAP.2016.2586580.
[14] B. D. Nguyen dan C. Pichot, “Unit-Cell Loaded With PIN Diodes for 1-Bit Linearly Polarized Reconfigurable Transmitarrays,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 1, pp. 98–102, Jan. 2019, doi: 10.1109/LAWP.2018.2881555
[15] J. Yu, W. Jiang, dan S. Gong, “Design of a 2.5-D 2-Bit Reconfigurable Transmitarray Element for 5G mmWave Applications,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 10, pp. 2016–2020, Oct. 2019, doi: 10.1109/LAWP.2019.2936300