##plugins.themes.bootstrap3.article.main##

Krisna Sing

Abstract

This article presents a conceptual framework for lightning risk management at substations that emphasizes a defense-in-depth approach as the primary strategy for technical and operational risk reduction. The proposed framework integrates an understanding of
lightning hazard (strike density, local climate, topography), asset vulnerability (isolation coordination, clearances, and BIL per
equipment), and failure consequences (service reliability, safety, CAPEX/OPEX costs) into a standards-based risk management cycle.
The protection layers are conceptualized from external mitigation (shielding/air-termination, down-conductors, and low-impedance
grounding systems), internal protection (surge arresters and insulation coordination), to detection and control layers (lightning current
monitoring, event recording, condition-based maintenance). The framework also maps the process of establishing target protection
levels using the ALARP risk matrix, conceptually determining arrester locations/powers, and the governance of technical inspections and audits throughout the asset lifecycle. Integration of substation digital data (IEC 61850) to improve event observability and maintenance policy feedback is also proposed. While remaining theoretical (without calculations), this framework provides systematic guidance for utilities in developing layered protection policies that are adaptive to tropical climate variability, budget constraints, and reliability demands, while also serving as a basis for further quantitative studies

##plugins.themes.bootstrap3.article.details##

How to Cite
Sing, K. (2025). Conceptual Framework for Lightning Risk Management in Substations Based on Multi-Layered Protection . Journal of Electrical Engineering, 3(02), 40–46. https://doi.org/10.54209/elimensi.v3i02.401
References
[1.] P. Chowdhuri et al., “Parameters of lightning strokes: A review,” IEEE Trans. Power Del., vol. 20, no. 1, pp. 346–358, Jan. 2005, doi: 10.1109/TPWRD.2004.835039.
[2.] W. R. Gamerota, J. O. Elisme, M. A. Uman, V. A. Rakov, and F. Rachidi, “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat., vol. 54, no. 4, pp. 880–888, Aug. 2012, doi: 10.1109/TEMC.2011.2176131.
[3.] F. Mahmood, N. A. Sabiha, and M. Lehtonen, “Probabilistic risk assessment of MV insulator flashover under combined AC and lightning-induced overvoltages,” IEEE Trans. Power Del., vol. 30, no. 4, pp. 1880–1888, Aug. 2015, doi: 10.1109/TPWRD.2015.2388634.
[4.] M. A. Aftab, M. Hussain, and T. R. Ustun, “IEC 61850 based substation automation system: A survey,” Int. J. Electr. Power Energy Syst., vol. 122, p. 106008, Nov. 2020, doi: 10.1016/j.ijepes.2020.106008.
[5.] S. Kumar, A. Abu-Siada, N. Das, and S. Islam, “Toward a substation automation system based on IEC 61850,” Electronics, vol. 10, no. 3, p. 310, 2021, doi: 10.3390/electronics10030310.
[6.] M. G. Ballarotti, O. Pinto Jr., and M. M. F. Saba, “Frequency distributions of some parameters of negative cloud-to-ground lightning,” J. Geophys. Res.: Atmos., vol. 117, no. D9, p. D09112, May 2012, doi: 10.1029/2011JD017135.
[7.] K. Kutsuna, N. Nagaoka, Y. Baba, T. Tsuboi, and V. A. Rakov, “Estimation of lightning channel-base current from far electromagnetic field in the case of inclined channel,” Electr. Power Syst. Res., vol. 214, p. 108854, Jan. 2023, doi: 10.1016/j.epsr.2022.108854.
[8.] F. H. Silveira, S. Visacro, A. De Conti, and C. R. Mesquita, “Backflashovers of transmission lines due to subsequent lightning strokes,” IEEE Trans. Electromagn. Compat., vol. 54, no. 2, pp. 1028–1033, Apr. 2012, doi: 10.1109/TEMC.2011.2181851.
[9.] A. Tatematsu and T. Noda, “Three-dimensional FDTD calculation of lightning-induced voltages on a multiphase distribution line with lightning arresters and an overhead shielding wire,” IEEE Trans. Electromagn. Compat., vol. 56, no. 1, pp. 159–167, Feb. 2014, doi: 10.1109/TEMC.2013.2272652.
[10.] Praiseworthy Prize
[11.]
[12.] [10] N. A. Sabiha and M. Lehtonen, “Lightning-induced overvoltages transmitted over a distribution transformer with MV spark-gap operation—Part II: Mitigation using LV surge arrester,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2565–2573, Oct. 2010, doi: 10.1109/TPWRD.2010.2042976.
[13.] J. A. Martínez and F. Castro-Aranda, “Lightning performance analysis of an overhead transmission line protected by surge arresters,” IEEE Latin America Trans., vol. 7, no. 1, pp. 62–70, Mar. 2009, doi: 10.1109/TLA.2009.5173466.
[14.] V. M. N. Dladla, A. F. Nnachi, and R. P. Tshubwana, “Design, modeling, and analysis of IEEE Std 80 earth grid design refinement methods using ETAP,” Appl. Sci., vol. 13, no. 13, p. 7491, Jun. 2023, doi: 10.3390/app13137491.
[15.] V. C. Mathebula, P. Pillay, and H. A. Kruger, “Reliability of IEC 61850-based substation communication architectures,” Protection and Control of Modern Power Systems, vol. 7, p. 28, 2022, doi: 10.1186/s41601-022-00234-1.
[16.] F. Heidler, J. M. Cvetić, and B. V. Stanic, “Calculation of lightning current parameters,” IEEE Trans. Power Del., vol. 14, no. 2, pp. 399–404, Apr. 1999, doi: 10.1109/61.754080.
[17.] N. I. Ahmad et al., “Impacts of lightning-induced overvoltage on a hybrid solar PV–battery energy storage system,” Appl. Sci., vol. 11, no. 8, p. 3633, 2021, doi: 10.3390/app11083633.
[18.] (Opsional, jika butuh tambahan terkait IEC 61850) I. Ali and H. Abu-Rub, “IEC 61850 substation communication network architecture: A review,” Engineering Technology & Applied Science Research, vol. 5, no. 2, pp. —, 2015, doi: 10.1080/23317000.2015.1043475.